
Software Test Report

E-Commerce Mobile Application "ShopNow" v2.1.3

Document ID: TR-2025-042

Date of Report: April 8, 2025

Prepared by:

Version: 1.0

Executive Summary

This report presents the results of comprehensive testing conducted on the ShopNow e-commerce 
mobile application version 2.1.3 from March 18 to April 7, 2025. The testing focused on validating new 
features, verifying bug fixes, ensuring performance across various conditions, and confirming 
compatibility across platforms.

Key Findings:

All critical and high-severity issues have been addressed except for one high-severity wishlist
synchronization issue with a planned hotfix

Core functionality performs well across all tested platforms with 94.6% test case pass rate

New features (payment gateway integrations, recommendation engine) function as specified

Minor performance concerns exist on older Android (v10) devices (affecting ~8% of users)

Recommendation: The QA team recommends proceeding with release, with a phased rollout plan and 
immediate deployment of the wishlist synchronization hotfix.

Show Image

1. Test Objective

The primary objective of this testing cycle was to evaluate the quality, functionality, performance, and 
usability of the ShopNow e-commerce mobile application version 2.1.3 before its release to production. 
Specifically, our testing aimed to:

Dejan Majkic

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/
https://www.whatisscrum.org/about-page/


1. Validate that all newly implemented features function according to the requirements specifications,
particularly the enhanced payment gateway integrations and personalized recommendation engine.

2. Ensure that bug fixes from previous versions (v2.1.1 and v2.1.2) have been successfully resolved and
do not reintroduce previous issues.

3. Verify the application's performance under various network conditions and user loads, with special
attention to checkout process optimization.

4. Assess the application's compatibility across different mobile devices, operating systems, and screen
sizes to ensure a consistent user experience.

5. Validate security measures in place for user data protection, especially surrounding the new saved
payment methods feature.

This round of testing was conducted over a three-week period from March 18, 2025, to April 7, 2025, 
following the development team's feature freeze on March 17, 2025.

Show Image

2. Areas Covered

2.1 Functional Testing

The following functional areas were thoroughly tested:

User Authentication & Account Management
Registration process

Login/logout functionality

Password reset flow

Account information management

User preferences settings

Product Catalog & Search
Product browsing and category navigation

Search functionality (text, voice, and image search)

Product filtering and sorting

Product details display

Recently viewed items tracking

Shopping Cart & Checkout

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Add/remove items functionality

Quantity modification

Save for later feature

Shipping options and calculations

All payment methods (credit cards, digital wallets, buy-now-pay-later options)

Order confirmation and receipt generation

New Features
Personalized product recommendation engine

Enhanced payment gateway integration (5 new payment methods)

Wishlist sharing via social media

AR-based product visualization for furniture items

In-app customer service chat

Show Image

2.2 Non-Functional Testing

The following non-functional areas were tested:

Performance Testing
Response time for critical functions

Application behavior under various network conditions (4G, 5G, Wi-Fi, poor connectivity)

Memory usage and battery consumption

Load testing for server-side operations

Compatibility Testing
Testing across Android (versions 10-14) and iOS (versions 15-18)

Testing on various screen sizes and resolutions

Testing with different device manufacturers (Samsung, Google, Apple, Xiaomi, OnePlus)

Security Testing
Input validation and sanitization

Authentication and authorization mechanisms

Secure storage of sensitive user data

Session management

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


SSL/TLS implementation

Usability Testing
Navigation flow

Accessibility compliance

Error message clarity

Localization for 5 languages (English, Spanish, French, German, Japanese)

Show Image

3. Areas Not Covered

The following areas were not included in this testing cycle:

Backend Administrative Dashboard
Reason: The admin dashboard is scheduled for a separate update in v2.2.0 and will be tested in
that cycle.

Integration with Physical Store Inventory Systems
Reason: This feature is still under development and is scheduled for release in v2.2.0.

Full Penetration Testing
Reason: A specialized third-party security firm has been contracted to perform comprehensive
penetration testing, with results expected by April 20, 2025, before the production release.

Extended Performance Testing on Low-End Devices
Reason: Time constraints prevented testing on devices older than 3 years. Testing focused on
devices that represent 95% of our current user base according to analytics.

Marketplace Seller Portal
Reason: Not part of the current release scope and scheduled for a separate dedicated testing
cycle.

Show Image

4. Testing Approach
This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


4.1 Test Strategy

Our testing approach combined various testing methodologies to ensure comprehensive coverage:

1. Risk-Based Testing
We identified high-risk areas through stakeholder interviews and historical defect analysis.

Payment processing, user authentication, and the new recommendation engine received
additional testing focus due to their critical nature.

2. Test Case Design
Test cases were designed using both black-box and white-box techniques.

Boundary value analysis and equivalence partitioning were applied to input fields.

Decision tables were used for complex business rules in the checkout process.

3. Automation & Manual Testing Balance
Regression test suite was fully automated (452 test cases).

New features were initially tested manually, with automation scripts developed in parallel.

Exploratory testing sessions were conducted for usability and edge cases.

Show Image

4.2 Testing Process

The testing process followed these phases:

1. Test Planning (March 10-17, 2025)
Test plan creation and resource allocation

Test environment setup and data preparation

Test case review and prioritization

2. Test Execution (March 18-April 3, 2025)
Smoke testing on each new build

Full regression testing on stable builds

Feature-specific testing for new functionality

Non-functional testing (performance, security, compatibility)

3. Defect Management (Ongoing)
Defects logged in JIRA with severity and priority assignments

Daily defect triage meetings with development team

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Verification testing for fixed defects

4. Reporting & Analysis (April 4-7, 2025)
Test results compilation and metrics analysis

Final assessment and recommendations

Report preparation and stakeholder presentation

Show Image

4.3 Testing Tools

The following tools were utilized during the testing process:

Test Management: TestRail

Defect Tracking: JIRA

Automation Framework: Appium 2.2.1 with Python 3.11

Performance Testing: JMeter 5.6, Firebase Performance Monitoring

Compatibility Testing: BrowserStack App Live

Security Testing: OWASP ZAP, Mobile Security Framework

Accessibility Testing: Accessibility Scanner, VoiceOver/TalkBack

4.4 Sample Key Test Cases

Below are examples of critical test cases that helped validate core functionality:

Test Case ID: TC-PAYMENT-001

Title: Credit Card Payment Processing - Complete Flow

Preconditions: User logged in, items added to cart, checkout initiated

Steps:
1. Select "Credit Card" as payment method

2. Enter valid credit card details (Visa: 4111 1111 1111 1111)

3. Complete purchase process

Expected Results: Order confirmed, payment processed, confirmation email sent

Actual Results: As expected

Status: PASS

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Test Case ID: TC-SECURITY-054

Title: Saved Payment Methods - Data Encryption

Preconditions: User with saved payment methods

Steps:
1. Intercept API responses when retrieving saved payment methods

2. Analyze data format in transit and at rest

Expected Results: All sensitive data encrypted, card numbers masked except last 4 digits

Actual Results: As expected

Status: PASS

Show Image

5. Defect Report

5.1 Defect Summary

A total of 87 defects were identified during the testing cycle, categorized by severity as follows:

 

Severity Count Closed Open

Critical 5 5 0

High 12 11 1

Medium 38 34 4

Low 32 22 10

Total 87 72 15

Show Image

Show Image

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


5.2 Critical Defects (All Resolved)

1. Payment Processing Failure for International Credit Cards (SHOP-4523)
Description: Transactions with non-US credit cards failed at the final step with a generic error.

Root Cause: Currency conversion issue in the new payment gateway integration.

Resolution: Fixed by updating the payment processor API to handle international currency codes
correctly.

Show Image

2. User Data Exposure in API Response (SHOP-4531)
Description: Full credit card details were being returned in plaintext in the API response after
adding a new payment method.

Root Cause: Missing data masking in the payment API response handler.

Resolution: Implemented proper masking for sensitive data and encryption for API responses.

Show Image

3. App Crash on Product Image Zoom (SHOP-4547)
Description: Application consistently crashed when users attempted to zoom in on product
images on Android 12 devices.

Root Cause: Memory leak in the image processing library.

Resolution: Updated image handling library and implemented better memory management.

4. Incorrect Order Totals with Promotions (SHOP-4562)
Description: Order totals were calculated incorrectly when multiple promotional discounts were
applied.

Root Cause: Logic error in the discount aggregation algorithm.

Resolution: Revised the discount calculation logic and added unit tests for various promotion
combinations.

5. Authentication Bypass on Deep Link Navigation (SHOP-4578)
Description: Users could access order history without authentication when navigating via specific
deep links.

Root Cause: Missing authentication check in the deep link handler.

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Resolution: Implemented proper authentication verification for all deep link navigation paths.

5.3 Open High-Severity Defect

1. Intermittent Synchronization Issue with Wishlist (SHOP-4589)
Description: Approximately 5% of the time, items added to wishlist while offline are not
synchronized when the connection is restored.

Current Status: Development team has identified the root cause as a race condition in the
synchronization process.

Mitigation Plan: Temporary warning added to inform users to check their wishlist after
reconnecting. Fix is scheduled for deployment in a hotfix release on April 12, 2025.

Show Image

5.4 Defect Trend Analysis

The defect discovery rate decreased significantly in the final week of testing, indicating stabilizing quality:

Week 1: 52 defects discovered (60%)

Week 2: 27 defects discovered (31%)

Week 3: 8 defects discovered (9%)

Show Image

The declining trend in defect discovery, particularly for high and critical severity issues, suggests the 
application has reached an acceptable level of stability.

6. Platform Details

6.1 Test Environment

Server Environment:

Backend API: Production-like environment with isolated database

Content Delivery Network: Akamai staging environment

Database: PostgreSQL 15.3

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Cache: Redis 7.2

API Version: v3.4.2

Show Image

Client Environments:

Android Devices:

 

Device Model OS Version Screen Resolution

Samsung Galaxy S23 Android 14 1080 x 2340

Google Pixel 7 Android 14 1080 x 2400

Xiaomi Mi 11 Android 13 1440 x 3200

Samsung Galaxy A53 Android 13 1080 x 2400

OnePlus 10T Android 13 1080 x 2412

Google Pixel 5 Android 12 1080 x 2340

Samsung Galaxy S20 Android 12 1440 x 3200

Motorola Moto G Power Android 11 720 x 1600

Samsung Galaxy A32 Android 11 720 x 1600

Google Pixel 4 Android 10 1080 x 2280

Show Image

iOS Devices:

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


 

Device Model OS Version Screen Resolution

iPhone 15 Pro iOS 18.1 1179 x 2556

iPhone 15 iOS 18.1 1179 x 2556

iPhone 14 iOS 18.1 1170 x 2532

iPhone 13 Pro iOS 17.4 1170 x 2532

iPhone SE (2022) iOS 17.4 750 x 1334

iPad Pro 12.9 (2023) iOS 17.4 2732 x 2048

iPhone 12 iOS 16.5 1170 x 2532

iPhone 11 iOS 16.5 828 x 1792

iPad Air (2022) iOS 16.5 2360 x 1640

iPhone XR iOS 15.7 828 x 1792

6.2 Network Conditions Tested

High-Performance: Wi-Fi (100+ Mbps)

Average Mobile: 4G/LTE (10-20 Mbps)

5G Connection: 5G (50+ Mbps)

Poor Connection: Throttled 3G (1-2 Mbps)

Intermittent Connection: Simulated connection drops and recoveries

Offline Mode: Testing offline functionality and data synchronization upon reconnection

Show Image

6.3 Tools and Frameworks

Automated Testing: Appium 2.2.1 with Python 3.11

Performance Monitoring: Firebase Performance Monitoring, JMeter 5.6

Crash Analytics: Firebase Crashlytics

Accessibility Testing: Android Accessibility Scanner, iOS Accessibility Inspector

Device Farm: BrowserStack with 20+ device configurations

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Show Image

7. Overall Status

7.1 Testing Summary

Test Cases Executed: 875 out of 875 planned (100%)

Test Case Pass Rate: 828 passed (94.6%)

Automation Coverage: 72% of all test cases

Code Coverage: 87% (unit tests + integration tests)

Critical User Journeys: 100% passing (all 15 critical user journeys verified)

Show Image

7.2 Quality Assessment

Based on our testing results, the ShopNow v2.1.3 application has reached a satisfactory level of quality 
with the following observations:

Strengths:

The core shopping functionality is stable and performs well across all tested devices.

The new recommendation engine provides accurate product suggestions with proper performance.

The application handles network interruptions gracefully in most scenarios.

Accessibility compliance has improved significantly compared to previous versions.

Areas of Concern:

The wishlist synchronization issue (SHOP-4589) affects a small percentage of users but has a
workaround until fixed.

Performance on older Android devices (specifically Android 10) shows slight degradation during
image-heavy browsing sessions.

The AR product visualization feature works well but consumes significant battery power during
extended use.

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Show Image

7.3 Risk Assessment

The remaining risks associated with releasing the application are:

1. Wishlist Synchronization Issue: LOW RISK
Impact: Low (affects 5% of offline-to-online transitions for wishlist items only)

Mitigation: User notification implemented, hotfix scheduled within 4 days of release

2. Performance on Older Devices: LOW RISK
Impact: Low (affects < 8% of user base according to analytics)

Mitigation: Performance optimizations planned for v2.1.4

3. Third-Party Payment Provider Integration: LOW RISK
Impact: Potentially high (could affect checkout process)

Mitigation: Extensive testing completed, all critical issues resolved, monitoring plan in place

Show Image

7.4 Release Recommendation

Based on our comprehensive testing and the current status of the application, the QA team 
RECOMMENDS PROCEEDING WITH THE RELEASE of ShopNow v2.1.3 to production, with the 
following conditions:

1. Implement the planned hotfix for the wishlist synchronization issue immediately after release.

2. Enable enhanced monitoring for the new payment gateway integration for the first 72 hours after
release.

3. Confirm the rollout plan includes a phased approach (starting with 10% of users) to allow for early
detection of any unforeseen issues.

7.5 Post-Release Activities

The following activities are recommended after release:

1. Close monitoring of application performance metrics for the first week.

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


2. Targeted user surveys to gather feedback on the new recommendation engine.

3. Analysis of crash reports and application performance across device spectrum.

4. Review of customer support tickets for any patterns indicating undiscovered issues.

5. Verification of the wishlist synchronization hotfix once deployed.

Show Image

8. Requirements Traceability

The following table shows how key requirements were validated through testing:

 

Requirement

ID
Requirement Description Test Case IDs Status

REQ-PAY-001
System shall support international payment

methods

TC-PAY-001 through TC-PAY-

015
PASSED

REQ-PAY-002 Payment information shall be encrypted TC-SEC-042, TC-SEC-043 PASSED

REQ-RECOM-

001

Recommendation engine shall personalize

suggestions

TC-RECOM-001 through TC-

RECOM-008
PASSED

REQ-PERF-001
Checkout process shall complete in <3

seconds on 4G
TC-PERF-012 PASSED

REQ-AR-001 AR visualization shall support furniture items TC-AR-001 through TC-AR-005
PASSED with

NOTE*

*Note: AR visualization meets requirements but has higher than expected battery consumption.

Show Image

9. Testing Challenges & Lessons Learned

9.1 Challenges Encountered

1. Device Availability: Limited access to specific Android device models created scheduling challenges
for device-specific testing.

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


Solution: Implemented a device reservation system and augmented physical devices with
BrowserStack testing.

2. Test Data Generation: Creating realistic shopping histories for recommendation engine testing
proved difficult.

Solution: Used anonymized production data with permission from the data governance team.

3. Third-Party Integrations: Payment gateway sandbox environments experienced intermittent
availability issues.

Solution: Created mock implementations for preliminary testing and scheduled critical payment
testing during known stable periods.

4. Performance Benchmarking: Initial inconsistent performance results made trend analysis difficult.
Solution: Standardized testing protocols and environment conditions to create reliable baseline
metrics.

9.2 Lessons Learned

1. Early API Testing: Beginning API testing before UI was complete allowed us to catch integration
issues earlier and reduced end-to-end testing blockers.

2. Automated Visual Testing: Implementing visual comparison testing for UI components saved
significant manual verification time.

3. Collaborative Defect Triage: Daily joint triage meetings with development improved fix turnaround
time and reduced miscommunication.

4. Progressive Feature Testing: Testing features incrementally across sprints rather than waiting for
complete implementation improved quality and reduced end-of-cycle pressure.

Show Image

10. Appendices

10.1 Test Case Execution Details

Detailed test case execution results are available in TestRail under project "ShopNow-v2.1.3" (TR-2025-
042).

10.2 Performance Test Results

Detailed performance test results are available in the separate Performance Test Report (PTR-2025-113).

10.3 Traceability Matrix
This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


The full Requirements Traceability Matrix linking requirements to test cases and their results is available in 
document RTM-2025-042.

10.4 Test Data Used

Description of test datasets used during testing is available in the Test Data Inventory document (TDI-
2025-042).

10.5 Defect Details

Complete details of all defects, including screenshots and reproduction steps, are available in JIRA project 
SHOP.

11. Approvals

The following stakeholders have reviewed this report and approve the release recommendation or have 
noted their concerns:

 

Role Name
Approval

Date
Signature Notes

QA Lead
Jennifer

Martinez
April 8, 2025 [Approved]

Approves release with conditions noted in section

7.4

Development

Lead

Michael

Chen
April 8, 2025 [Approved]

Confirms completion of all critical fixes and

readiness for hotfix deployment

Product Owner
Sarah

Johnson
April 8, 2025 [Approved]

Accepts remaining risks and confirms business value

of proceeding with release

Security Officer David Wilson April 8, 2025 [Approved]
Approves release pending completion of third-party

penetration testing by April 20

Release

Manager
Priya Patel April 8, 2025 [Approved] Will implement phased rollout as recommended

By signing above, approvers acknowledge they have reviewed this report in its entirety and understand 
the current state of the application, including any limitations, risks, and mitigation plans.

End of Test Report

This Guide is part of the Software Testing Mastery in Scrum Course

https://www.whatisscrum.org/software-testing-mastery-in-scrum/


https://www.whatisscrum.org/software-testing-mastery-in-scrum/

